Estimation of heritability with genomic information by method R

Author:

Hollifield Mary Kate1ORCID,Lourenco Daniela1ORCID,Misztal Ignacy1ORCID

Affiliation:

1. Department of Animal and Dairy Science University of Georgia Athens Georgia USA

Abstract

AbstractEstimating heritabilities with large genomic models by established methods such as restricted maximum likelihood (REML) or Bayesian via Gibbs sampling is computationally expensive. Alternatively, heritability can be estimated indirectly by method R and by maximum predictivity, referred to as MaxPred here, at a much lower computing cost. By method R, the heritability used for predictions with whole and partial data is considered the best estimate when the predictions based on partial data are unbiased relative to those with the complete data. By MaxPred, the heritability estimate is the one that maximizes predictivity. This study compared heritability estimation with genomic information using average information REML (AI–REML), method R and MaxPred. A simulated population was generated with ten generations of 5000 animals each and an effective population size of 80. Each animal had one record for a trait with a heritability of 0.3, a phenotypic variance of 10.0 and was genotyped at 50 k SNP. In method R, the heritability estimate is found when the expectation of a regression coefficient is equal to one. The regression is the EBV of selection candidates calculated with the whole dataset regressed on the EBV of candidates calculated from a partial dataset. In this study, we used the GBLUP framework and therefore, GEBV was calculated. The partial dataset was created by removing the last generation of phenotypes. Predictivity was defined as the correlation between the adjusted phenotypes of the selection candidates and their GEBV calculated from the partial data. We estimated the heritability for populations that included between three and 10 generations. In every scenario, predictivity increased as more data was used and was the highest at the simulated heritability. However, the predictivity for all data subsets and all heritabilities compared did not differ more than 0.01, suggesting MaxPred is not the best indication for heritability estimation. For the whole dataset, the heritability was estimated as 0.30 ± 0.01, 0.26 ± 0.01 and 0.30 ± 0.04 for AI–REML without genomics, AI–REML with genomics and method R with genomics, respectively. Heritability estimation with genomics by method R reduced timing by 83%, implying a reduction in computing time from 9.5 to 1.6 h, on average, compared to AI–REML with genomics. Method R has the potential to estimate heritabilities with large genomic information at a low cost when many generations of animals are present; however, the standard error can be high when only a few iterations are used.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3