Video frame interpolation for high dynamic range sequences captured with dual‐exposure sensors

Author:

Çoğalan U.1ORCID,Bemana M.1ORCID,Seidel HP.1ORCID,Myszkowski K.1ORCID

Affiliation:

1. Max‐Planck‐Institut für Informatik Germany

Abstract

AbstractVideo frame interpolation (VFI) enables many important applications such as slow motion playback and frame rate conversion. However, one major challenge in using VFI is accurately handling high dynamic range (HDR) scenes with complex motion. To this end, we explore the possible advantages of dual‐exposure sensors that readily provide sharp short and blurry long exposures that are spatially registered and whose ends are temporally aligned. This way, motion blur registers temporally continuous information on the scene motion that, combined with the sharp reference, enables more precise motion sampling within a single camera shot. We demonstrate that this facilitates a more complex motion reconstruction in the VFI task, as well as HDR frame reconstruction that so far has been considered only for the originally captured frames, not in‐between interpolated frames. We design a neural network trained in these tasks that clearly outperforms existing solutions. We also propose a metric for scene motion complexity that provides important insights into the performance of VFI methods at test time.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference70 articles.

1. AlghamdiM. M. FuQ. ThabetA. K. HeidrichW.:Reconfigurable snapshot hdr imaging using coded masks and inception network. 3

2. Optical Flow Estimation from a Single Motion-blurred Image

3. BaoW. LaiW.-S. MaC. ZhangX. GaoZ. YangM.-H.: Depth-aware video frame interpolation. InProc. CVPR(2019) pp.3703–3712. 2

4. BradskiG.: The OpenCV Library.Dr. Dobb's Journal of Software Tools(2000). 7

5. Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR Reconstruction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Images Across Scales Using Adversarial Training;ACM Transactions on Graphics;2024-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3