Affiliation:
1. Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
2. School of Science Western Sydney University Penrith New South Wales Australia
3. UMR CNRS 7058 ‘Ecologie et Dynamique des Systèmes Anthropisés’ (EDYSAN) Université de Picardie Jules Verne Amiens France
Abstract
AbstractAimEucalypts are important and popular urban tree species across cities worldwide. However, little is known about how their climatic niche breadth (CNB) and functional traits predict their success, and vulnerability, to current climate change in cities. We assessed the relationship between the CNB of eucalypts and key traits to understand their tolerance to climate change.LocationGlobal urban areas, 66 cities in 21 countries.Time period1981 to 2022.Major species studiedFifty ‘eucalypt’ species belonging to the genera Eucalyptus, Angophora and Corymbia.MethodsWe used the species' safety margin concept to determine cities where eucalypts were planted outside the limits of their CNB, as defined from the native range, considering two extreme variables, maximum temperature of the warmest month (MTWM) and precipitation of the driest month (PDM). We assessed correlations between functional traits (leaf δ13C, leaf dry mass, leaf length, leaf N per dry mass, wood density) and negative safety margins, indicative of tolerance to non‐native conditions.ResultsIn total, 42 species planted in 40 cities exceeded their safety margins for MTWM, while 43 species in 38 cities exceeded their safety margins for PDM. Within 24 cities, all species exceeded their native CNB for both MTWM and PDM. The cities of Atakpame (Togo), Chennai (India), Chongqing (China) and the US cities of Phoenix and Riverside had the highest richness of eucalypt species growing outside their native CNB. Broadly, species with wide CNB, small leaves, high δ13C, high leaf N per dry mass and high wood density were more likely to persist in cities where climatic conditions exceeded their native CNB.Main conclusionsEucalypts occupy many cities experiencing climatic conditions outside their native CNB. Species with traits characteristic of heat and drought tolerance are more often planted in cities where climatic conditions may exceed their CNB native limits.
Reference83 articles.
1. Fitting Linear Mixed-Effects Models Usinglme4
2. Bivand R. Lewin‐Koh N. Pebesma E. Archer E. Baddeley A. Bearman N. Bibiko H.‐J. Brey S. Callahan J. &Carrillo G.(2022).Package ‘maptools’.https://cran.r‐project.org/web/packages/maptools/maptools.pdf
3. Going nowhere fast: a review of seed dispersal in eucalypts
4. A new method for assisting species selection;Booth T. H.;The Commonwealth Forestry Review,1985
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献