An inquiline mosquito modulates microbial diversity and function in an aquatic microecosystem

Author:

Arellano Aldo A.12,Young Erica B.34,Coon Kerri L.2ORCID

Affiliation:

1. Microbiology Doctoral Training Program University of Wisconsin‐Madison Madison Wisconsin USA

2. Department of Bacteriology University of Wisconsin‐Madison Madison Wisconsin USA

3. Department of Biological Sciences University of Wisconsin‐Milwaukee Milwaukee Wisconsin USA

4. School of Freshwater Sciences University of Wisconsin‐Milwaukee Milwaukee Wisconsin USA

Abstract

AbstractUnderstanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant, Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito, Wyeomyia smithii, in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population of S. purpurea pitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem.

Funder

Howard Hughes Medical Institute

National Institute of Food and Agriculture

National Institute of General Medical Sciences

Division of Integrative Organismal Systems

Division of Emerging Frontiers

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3