Competition between two congener invaders: Food conditions drive the success of the quagga over zebra mussel in a large shallow lake

Author:

Balogh Csilla1ORCID,Kobak Jarosław2ORCID,Faragó Nóra3ORCID,Serfőző Zoltán1ORCID

Affiliation:

1. Balaton Limnological Research Institute Eötvös Lóránd Research Network Tihany Hungary

2. Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology Nicolaus Copernicus University Toruń Poland

3. Biological Research Center, Institute of Genetics Eötvös Lóránd Research Network Szeged Hungary

Abstract

Abstract Dreissena rostriformis bugensis (quagga mussel, QM) has spread into areas occupied by an earlier invader, Dreissena polymorpha (zebra mussel, ZM) in Europe and North America. Usually QM displaces ZM within a few years or both species coexist, although the mechanisms driving these outcomes have not been uncovered clearly. In Lake Balaton (central‐eastern Europe), QM displaced ZM in the oligotrophic (food‐limited) basin, whereas they coexist in the eutrophic (food‐rich) basin. Searching for the drivers of interactions in dreissenid assemblages, we compared survival, growth, allometry, shell hardness, biomacromolecule content and superoxide dismutase (SOD) expression (indicating nutrition stress) of dreissenids collected in both basins in a field survey, and in individuals collected from the food‐rich basin and experimentally transplanted (10 weeks) to the food‐limited or food‐rich (i.e. the same) basin. In the field survey, QM from the food‐rich basin showed the greater height increment per unit length than coexisting ZM and food‐limited conspecifics. ZM had the hardest shells of all the mussel populations. In the food‐rich basin, ZM did not differ from QM in weight, protein, and carbohydrate contents, but had higher lipid content and SOD expression. Food‐limited QM, compared to conspecifics from the food‐rich basin, had weaker shells, but their protein, carbohydrate, and lipid contents showed faster increments per unit size, thus adults made up for the initial advantage of the food‐rich population. QM survived better than ZM after transplantation irrespective of the basin. Shells were harder in ZM versus QM and in the food‐rich versus food‐limited conditions. QM grew at both locations, whereas ZM only in the food‐rich basin. The protein and carbohydrate contents were greater in the food‐rich versus food‐limited basin, with no interspecific differences. Lipid content in QM was higher in the food‐limited versus food‐rich basin, whereas the opposite held for ZM. We demonstrated that the dreissenid species could coexist in food‐rich conditions, despite the higher level of stress in ZM (as shown by weaker survival, higher SOD expression), whereas QM displaced ZM under food‐limiting conditions, probably due to the ability to replace missing storage carbohydrates with accumulated lipids. Nevertheless, QM from the food‐limited basin also showed symptoms of nutritional stress (changes in biomacromolecule content, lower shell hardness). Results suggest that the ability to show a rapid change in metabolism could be an important advantage of QM over ZM in their competition.

Funder

Magyar Tudományos Akadémia

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Wiley

Subject

Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3