Genetic drift versus natural selection affecting the evolution of spectral and functional traits of two key macrophytes: Phragmites australis and Nuphar lutea

Author:

Castellani Maria Beatrice1,Dalla Vecchia Alice23ORCID,Bolpagni Rossano23,Natale Roberto1,Piaser Erika3,Lastrucci Lorenzo4,Coppi Andrea1ORCID,Villa Paolo3ORCID

Affiliation:

1. Department of Biology University of Florence Florence Italy

2. Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma Parma Italy

3. Institute for Electromagnetic Sensing of the Environment (IREA) National Research Council of Italy (CNR) Milan Italy

4. Natural History Museum, Botanical Collections University of Florence Florence Italy

Abstract

Abstract Both genetic and phenotypic intraspecific diversity play a crucial role in the ecological and evolutionary dynamics of organisms. Several studies have compared phenotypic divergence (Pst) and differentiation of neutral loci (Fst) to infer the relative roles of genetic drift and natural selection in population differentiation (PstFst comparison). For the first time, we have assessed and compared the genetic variation and differentiation at the leaf trait level in two key macrophytes, Phragmites australis and Nuphar lutea. To this aim, we quantified and described the genetic structure and phenotypic diversity of both species in five lake systems in north‐central Italy. We then investigated the relative roles of genetic drift and natural selection on leaf trait differentiation (PstFst), assuming that Fst reflects divergence caused only by genetic drift while Pst also incorporates the effects of selective dynamics on the phenotype. In terms of genetic structure, the results for P. australis were in line with those observed for other Italian and European conspecific populations. Conversely, N. lutea showed a more complex genetic structure than expected at the site level, probably due to the combined effect of genetic isolation and its mixed mating system. Both species exhibited high variability in leaf functional traits within and among sites, highlighting a high degree of phenotypic plasticity. PstFst comparisons showed a general tendency towards directional selection in P. australis and a more complex pattern in N. lutea. Indeed, the drivers of phenotypic differentiation in N. lutea showed a variable mix of stabilising and directional selection or neutral divergence at most sites. The prevalence of vegetative over generative reproduction leads P. australis populations to be dominated by a few clones that are well adapted to local conditions, including phenotypes that respond plastically to the environment. In contrast, in N. lutea, the interaction of a mixed mating system and geographical isolation among distant sites tends to reduce the effect of outbreeding depression and provides the genetic basis for adaptive capacity. The first joint analysis of the genetic structure of these two key macrophytes allowed a better understanding of the relative roles of genetic drift and natural selection in the diversification of phenotypic traits within habitats dominated by P. australis and N. lutea.

Publisher

Wiley

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3