Social media insights on public perception and sentiment during and after disasters: The European floods in 2021 as a case study

Author:

Li Weilian12,Haunert Jan‐Henrik1ORCID,Knechtel Julius1,Zhu Jun2,Zhu Qing2,Dehbi Youness3ORCID

Affiliation:

1. Institute of Geodesy and Geoinformation University of Bonn Bonn Germany

2. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China

3. Computational Methods Lab HafenCity University Hamburg Hamburg Germany

Abstract

AbstractDetecting and collecting public opinion via social media can provide near real‐time information to decision‐makers, which plays a vital role in urban disaster management and sustainable development. However, there has been little work focusing on identifying the perception and the sentiment polarity expressed by users during and after disasters, particularly regional flood events. In this article, we comprehensively analyze tweets data related to the “European floods in 2021” over time, topic, and sentiment, forming a complete workflow from data processing, topic modeling, sentiment analysis, and topic and sentiment prediction. The aim is to address the following research questions: (1) What are the public perception and main concerns during and after floods? (2) How does the public sentiment change during and after floods? Results indicate that there is a significant correlation between a flood's trend and the heat of corresponding tweets. The three topics that receive the most public concern are: (1) climate change and global warming; (2) praying for the victims: and (3) disaster situations and information. Negative sentiments are predominant during the floods and will continue for some time. We tested five different classifiers, of which TextCNN‐attention turned out to deliver the best predictions in topic and sentiment prediction, and performed well for sparse flood tweets, it can be used to predict the topic and sentiment polarity of a single tweet in real‐time during the flood events. Our findings can help disaster agencies to better understand the dynamics of social networks and develop stronger situational awareness towards a disaster, which can contribute to scientifically justified decision‐making in urban risk management and also meet the challenges associated with the global sustainable development goal 11 (SDGs) on Sustainable Cities and Communities.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Predicting Flu Trends using Twitter data

2. Topic modeling and sentiment analysis of Twitter discussions on covid‐19 from spatial and temporal perspectives;AlAgha I.;Journal of Information Science Theory and Practice,2021

3. Dynamic Large Scale Data on Twitter Using Sentiment Analysis and Topic Modeling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3