Virtual geographic environment‐based integrated rockfall risk simulation method for canyon bridges

Author:

Ding Yulin1ORCID,Wu Yuting1,Zhu Qing1,Zhang Liguo1,Sun Qianqian1,Wang Weixi2ORCID

Affiliation:

1. Faculty of Geosciences and Environmental Engineering Southwest Jiaotong University Chengdu China

2. Key Laboratory of Urban Land Resources Monitoring and Simulation Ministry of Land and Resources Shenzhen China

Abstract

AbstractBridges located in mountainous areas are vulnerable to rockfall accidents, posing a threat to bridge engineering construction and operation safety in these regions. Under the coupling effect of complex environments and engineering disturbances, integrated rockfall risk simulation has become increasingly important for canyon bridge structural protection in long‐term construction and operation phases. One of the main scientific challenges in rockfall risk simulation is studying the interaction between rockfalls and the topography and engineering environments during consecutive contacts. To systematically simulate the integrated bridge rockfall risk, an integrated construction of multivariable elements coupled with rockfall risk environments and scenarios is required. In this article, we proposed a VGE‐based integrated rockfall scenario simulation method that uses the “associated representation—integrated modelling—interactional simulation” core strategy. Our method constructs a virtual rockfall risk environment by fusing multisource data to represent rockfall factors that induce rockfall disasters, hazard‐forming environments, and elements at risk. We design rockfall scenarios under different bridge engineering construction conditions and extreme environmental conditions to analyze the interactional rockfall risks. The results demonstrate that our method enables a systematic analysis of the potential integrated rockfall risk, providing realistic reference value for the timely and effective disposal of emergencies, and reducing the harm and losses caused by such emergencies.

Funder

National Natural Science Foundation of China

Science and Technology Plan Projects of Tibet Autonomous Region

Publisher

Wiley

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3