A Perceptual Shape Loss for Monocular 3D Face Reconstruction

Author:

Otto C.12ORCID,Chandran P.1ORCID,Zoss G.1ORCID,Gross M.12ORCID,Gotardo P.1ORCID,Bradley D.1ORCID

Affiliation:

1. DisneyResearch|Studios Switzerland

2. ETH Zürich Switzerland

Abstract

AbstractMonocular 3D face reconstruction is a wide‐spread topic, and existing approaches tackle the problem either through fast neural network inference or offline iterative reconstruction of face geometry. In either case carefully‐designed energy functions are minimized, commonly including loss terms like a photometric loss, a landmark reprojection loss, and others. In this work we propose a new loss function for monocular face capture, inspired by how humans would perceive the quality of a 3D face reconstruction given a particular image. It is widely known that shading provides a strong indicator for 3D shape in the human visual system. As such, our new ‘perceptual’ shape loss aims to judge the quality of a 3D face estimate using only shading cues. Our loss is implemented as a discriminator‐style neural network that takes an input face image and a shaded render of the geometry estimate, and then predicts a score that perceptually evaluates how well the shaded render matches the given image. This ‘critic’ network operates on the RGB image and geometry render alone, without requiring an estimate of the albedo or illumination in the scene. Furthermore, our loss operates entirely in image space and is thus agnostic to mesh topology. We show how our new perceptual shape loss can be combined with traditional energy terms for monocular 3D face optimization and deep neural network regression, improving upon current state‐of‐the‐art results.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting fairness for 3D face reconstruction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3