A Preliminary Study on the Morphological Changes of an NiTi‐Shaped Memory Alloy Stent in the Vertebral Body

Author:

Qiaoling Li1,Zhiwei Ren2,Bobo Zhang2,Yimin Yang2ORCID

Affiliation:

1. Nursing Department The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China

2. Department of Orthopaedics The First Affiliated Hospital of Xi'an Jiaotong University Xi'an China

Abstract

ObjectiveAt present, the most commonly used filler polymethyl methacrylate (PMMA) has the disadvantages of monomer toxicity, heat and leakage, and cannot be applied in young people. Therefore, finding a minimally invasive and good tissue‐compatible alternative material has been a research hotspot in spine surgery in recent years. The aim of this study is to explore whether the memory alloy stent can avoid the complications of bone cement or not.MethodsFour non‐adjacent vertebral bodies of the thoracic and lumbar spine in the 18 10‐month‐old pigs were selected as the surgical site and were randomly divided into the scaffold group and the bone cement group. The memory alloy scaffold and PMMA (polymethyl methacrylate) bone cement were placed via percutaneous puncture, and intraoperative fluoroscopy and micro‐CT were used to observe the changes in the height of scaffolds and bone cement in the vertebral body immediately, 6 weeks, and 12 weeks after operation, the microstructural parameters of the bone trabeculae (bone volume fraction, bone surface volume ratio, bone trabeculae number) were also measured.ResultsThe memory alloy stent could expand in the vertebral body, and its height gradually increased with time; additionally, the height of the bone cement mass did not change with time (p = 0.00). New bone trabeculae could grow into the scaffold along the gap, and the volume fraction of bone, the volume ratio of bone surface area, and the number of bone trabeculae increased gradually (p = 0.00). However, the volume fraction of bone, the volume ratio of bone surface area, and the number of trabeculae in the cement block decreased gradually (p = 0.00).ConclusionsMemory alloy scaffolds have dynamic expansion characteristics in vivo, which can effectively avoid the complications of bone cement. Thus, it is beneficial to explore this minimally invasive treatment for vertebral compression fractures.

Publisher

Wiley

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A shape memory alloy spring actuated gripper with self-sensing feedback for control;2023 16th International Conference on Sensing Technology (ICST);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3