Seascape genomics reveals limited dispersal and suggests spatially varying selection among European populations of sea lamprey (Petromyzon marinus)

Author:

Baltazar‐Soares Miguel123ORCID,Britton J. Robert1ORCID,Pinder Adrian1,Harrison Andrew J.1,Nunn Andrew D.4,Quintella Bernardo R.56,Mateus Catarina S.5,Bolland Jonathan D.4,Dodd Jamie R.4,Almeida Pedro R.57,Dominguez Almela Victoria1ORCID,Andreou Demetra1

Affiliation:

1. Department of Life and Environmental Sciences, Faculty of Science and Technology Bournemouth University Dorset UK

2. MARE – Marine and Environmental Sciences Centre ISPA – Instituto Universitário Lisbon Portugal

3. Department of Biology University of Turku Turku Finland

4. University of Hull Hull International Fisheries Institute Hull UK

5. MARE—Marine and Environmental Sciences Centre University of Évora Évora Portugal

6. Department of Animal Biology Faculty of Sciences, University of Lisbon Lisbon Portugal

7. Department of Biology, School of Sciences and Technology University of Évora Évora Portugal

Abstract

AbstractSea lampreyPetromyzon marinusis an anadromous and semelparous fish without homing behaviors. Despite being a freshwater, free‐living organism for a large part of their life cycle, its adulthood is spent as a parasite of marine vertebrates. In their native European range, while it is well‐established that sea lampreys comprise a single nearly‐panmictic population, few studies have further explored the evolutionary history of natural populations. Here, we performed the first genome‐wide characterization of sea lamprey's genetic diversity in their European natural range. The objectives were to investigate the connectivity among river basins and explore evolutionary processes mediating dispersal during the marine phase, with the sequencing of 186 individuals from 8 locations spanning the North Eastern Atlantic coast and the North Sea with double‐digest RAD‐sequencing, obtaining a total of 30,910 bi‐allelic SNPs. Population genetic analyses reinforced the existence of a single metapopulation encompassing freshwater spawning sites within the North Eastern Atlantic and the North Sea, though the prevalence of private alleles at northern latitudes suggested some limits to the species' dispersal. Seascape genomics suggested a scenario where oxygen concentration and river runoffs impose spatially varying selection across their distribution range. Exploring associations with the abundance of potential hosts further suggested that hake and cod could also impose selective pressures, although the nature of such putative biotic interactions was unresolved. Overall, the identification of adaptive seascapes in a panmictic anadromous species could contribute to conservation practices by providing information for restoration activities to mitigate local extinctions on freshwater sites.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3