Concordance and drivers of marine spatial structure determined using genogeographic clustering

Author:

Arranz Vanessa1234ORCID,Fewster Rachel M.5,Lavery Shane D.12

Affiliation:

1. School of Biological Sciences University of Auckland Auckland New Zealand

2. Institute of Marine Sciences University of Auckland Auckland New Zealand

3. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Barcelona Spain

4. Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain

5. Department of Statistics University of Auckland Auckland New Zealand

Abstract

AbstractAimIn order to provide a more comprehensive, community‐level understanding of marine gene flow and connectivity, we wished to first identify geographic regions of common spatial genetic divergence across multiple species along a southern temperate coastline, and then to determine which biological and ecological factors best explain the diversity in genetic patterns among species.LocationNew Zealand (NZ) marine coastline.TaxonTwenty‐one species of benthic invertebrate.Materials and MethodsA novel approach was used that involved: (1) use of genetic divergences (FST) from previously published studies to quantitatively describe patterns of population structure within each species as a fitted spline curve, (2) quantitatively clustering species by their similarity in geographic pattern using a dendrogram of curve similarities, and (3) then testing whether nine known life‐history and ecological traits are associated with the species sharing similar genetic patterns, using distance‐based regression.ResultsComparisons among species revealed not one, but four major common geographic patterns, within unexpected groups of species. The common locations of genetic divergence are similar to those previously identified, but differ substantially in their relative importance, compared to prior expectations. Two variables, Spawning Time and Taxon, explained significant proportions (26% and 16%) of the variation in the multivariate data.Main ConclusionsThe genogeographic clustering of population genetic divergences provided considerable insight into the concordance of marine spatial structure across species, and some potential biological drivers of those patterns. The four common patterns of population structure identified revealed that different species responded to the same environmental drivers in very different and unexpected ways. Although larval dispersal is an important factor uniting groups of species, the timing of dispersal may be more important than pelagic larval duration in NZ. These results should contribute greatly to the integration of population genetics into both community ecology and conservation management.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3