Predicting the fine‐scale spatial distribution of zoonotic reservoirs using computer vision

Author:

Layman Nathan C.12ORCID,Basinski Andrew J.2,Zhang Boyu2,Eskew Evan A.2,Bird Brian H.3,Ghersi Bruno M.34,Bangura James5,Fichet‐Calvet Elisabeth6,Remien Christopher H.7,Vandi Mohamed8,Bah Mohamed9,Nuismer Scott L.10ORCID

Affiliation:

1. EcoHealth Alliance New York New York USA

2. Institute for Interdisciplinary Data Sciences University of Idaho Moscow Idaho USA

3. One Health Institute, School of Veterinary Medicine, University of California—Davis Davis California USA

4. Tufts University Medford Massachusetts USA

5. University of Makeni and University of California, Davis One Health Program Makeni Sierra Leone

6. Bernhard Nocht Institute for Tropical Medicine Hamburg Germany

7. Department of Mathematics and Statistical Science University of Idaho Moscow Idaho USA

8. Ministry of Health and Sanitation Freetown Sierra Leone

9. Ministry of Agriculture and Forestry Freetown Sierra Leone

10. Department of Biological Sciences University of Idaho Moscow Idaho USA

Abstract

AbstractZoonotic diseases threaten human health worldwide and are often associated with anthropogenic disturbance. Predicting how disturbance influences spillover risk is critical for effective disease intervention but difficult to achieve at fine spatial scales. Here, we develop a method that learns the spatial distribution of a reservoir species from aerial imagery. Our approach uses neural networks to extract features of known or hypothesized importance from images. The spatial distribution of these features is then summarized and linked to spatially explicit reservoir presence/absence data using boosted regression trees. We demonstrate the utility of our method by applying it to the reservoir of Lassa virus, Mastomys natalensis, within the West African nations of Sierra Leone and Guinea. We show that, when trained using reservoir trapping data and publicly available aerial imagery, our framework learns relationships between environmental features and reservoir occurrence and accurately ranks areas according to the likelihood of reservoir presence.

Funder

Defense Advanced Research Projects Agency

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3