Molecular insights into OPR gene family in Saccharum identified a ScOPR2 gene could enhance plant disease resistance

Author:

Sun Tingting1,Wu Qibin1,Zang Shoujian12,Zou Wenhui1,Wang Dongjiao12,Wang Wenzhi1,Shen Linbo1,Zhang Shuzhen1,Su Yachun2,Que Youxiong12ORCID

Affiliation:

1. National Key Laboratory for Tropical Crop Breeding Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences Sanya Hainan 572024 China

2. Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane College of Agriculture, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China

Abstract

SUMMARY12‐Oxo‐phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85‐441 (Saccharum spontaneum), and LA‐purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole‐genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue‐specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen‐associated molecular pattern/pattern‐recognition receptor‐triggered immunity, producing reactive oxygen species, and initiating mitogen‐activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense‐related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.

Funder

Natural Science Foundation of Fujian Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3