Diversity of endemic cold‐water amphipods threatened by climate warming in northwestern China

Author:

Huang Mengyi12ORCID,Liu Hongguang1,Tong Yan12,Li Shuqiang1,Hou Zhonge1

Affiliation:

1. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

Abstract

AbstractAimClimate change threatens freshwater faunal diversity. To prioritize areas for conservation, patterns in the distribution of species must be understood. We apply genetic analysis and species distribution models to identify patterns in the distribution of freshwater amphipods around Xinjiang, China, and project the impact of climate change on endemic species.LocationXinjiang, China.MethodsA time‐calibrated tree containing 37 freshwater amphipod molecular samples from Xinjiang is built to calculate phylogenetic diversity (PD), the standardized effect sizes of PD, weighted endemism, and phylogenetic endemism, in 100 × 100 km grid cells. Niche differentiation among species in an area of high phylogenetic endemism is explored using n‐dimensional hypervolumes and principal components analyses. Present‐day and projected future suitability of habitat of endemic freshwater amphipod species is described using species distribution models.ResultsAreas of high freshwater amphipod diversity occur along the western boundary of Xinjiang; Areas north of Irtysh River, Tian Shan mountains, and the eastern margin of Pamir, have high phylogenetic endemism. Seasonal temperature and average annual water temperature contribute most to niche differentiation between geographically related freshwater species, negatively affect the projected distributions of endemic amphipods, and with continued warming, reduce future range distributions or latitudinal shifts of species.Main ConclusionsHigh freshwater amphipod phylogenetic endemism occurs in Xinjiang. Environmental factors are responsible for niche differentiation of endemic species. Future climate change will substantially affect the geographic distributions of endemic amphipods. Conservation efforts should be prioritized in areas with highly concentrated phylogenetic endemism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3