New advances for quantum‐inspired optimization

Author:

Du Yu1ORCID,Wang Haibo23,Hennig Rick3,Hulandageri Amit3,Kochenberger Gary3,Glover Fred3

Affiliation:

1. Business School University of Colorado at Denver Denver CO 80217 USA

2. Business School Texas A&M International University Laredo TX 78041 USA

3. Entanglement Inc. Boulder CO 80302 USA

Abstract

AbstractAdvances in quantum computing with applications in combinatorial optimization have evolved at an increasing rate in recent years. The quadratic unconstrained binary optimization (QUBO) model is at the center of these developments and has become recognized as an effective alternative method for representing a wide variety of combinatorial optimization problems. Additional momentum has resulted from the arrival of quantum computers and their ability to solve the Ising spin glass problem, another form of the QUBO model. This paper highlights advances in solving QUBO models and extensions to more general polynomial unconstrained binary optimization (PUBO) models as important alternatives to traditional approaches. Computational experience is provided that compares the performance of unique quantum‐inspired metaheuristic solvers—the Next Generation Quantum (NGQ) solver for QUBO models and the NGQ‐PUBO solver for PUBO models—with the performance of CPLEX and the Dwave quantum advantage solver. Extensive results, including experiments with a set of large set partitioning problems representing the largest QUBO models reported in the literature to date, along with maximum diversity and max cut problem sets, disclose that our solvers outperform both CPLEX and Dwave by a wide margin in terms of both computational time and solution quality.

Publisher

Wiley

Subject

Management of Technology and Innovation,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing QUBO models for quantum annealing: integer encodings for permutation problems;International Transactions in Operational Research;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3