Statistical proxy based mean‐reverting portfolios with sparsity and volatility constraints

Author:

Mousavi Ahmad1ORCID,Michilidis George2

Affiliation:

1. Department of Mathematics and Statistics American University Washington DC 20016 USA

2. Department of Statistics University of Florida Gainesville FL 32611 USA

Abstract

AbstractMean‐reverting portfolios with volatility and sparsity constraints are of prime interest to practitioners in finance since they are both profitable and well‐diversified, while also managing risk and minimizing transaction costs. Three main measures that serve as statistical proxies to capture the mean‐reversion property are predictability, portmanteau criterion, and crossing statistics. If in addition, reasonable volatility and sparsity for the portfolio are desired, a convex quadratic or quartic objective function, subject to nonconvex quadratic and cardinality constraints needs to be minimized. In this paper, we introduce and investigate a comprehensive modeling framework that incorporates all the previous proxies proposed in the literature and develop an effective unifying algorithm that is enabled to obtain a Karush–Kuhn–Tucker (KKT) point under mild regularity conditions. Specifically, we present a tailored penalty decomposition method that approximately solves a sequence of penalized subproblems by a block coordinate descent algorithm. To the best of our knowledge, our proposed algorithm is the first method for directly solving volatile, sparse, and mean‐reverting portfolio problems based on the portmanteau criterion and crossing statistics proxies. Further, we establish that the convergence analysis can be extended to a nonconvex objective function case if the starting penalty parameter is larger than a finite bound and the objective function has a bounded level set. Numerical experiments on the S&P 500 data set demonstrate the efficiency of the proposed algorithm in comparison to a semidefinite relaxation‐based approach and suggest that the crossing statistics proxy yields more desirable portfolios.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3