Assessing temperature‐based adaptation limits to climate change of temperate perennial fruit crops

Author:

Meza Francisco1ORCID,Darbyshire Rebecca2ORCID,Farrell Aidan3ORCID,Lakso Alan4,Lawson James5ORCID,Meinke Holger6ORCID,Nelson Gerald7ORCID,Stockle Claudio8

Affiliation:

1. Centro Interdisciplinario de Cambio Global Pontificia Universidad Católica de Chile Santiago Chile

2. CSIRO Agriculture and Food Canberra Australian Capital Territory Australia

3. Department of Life Sciences St. Augustine Trinidad and Tobago

4. School of Integrative Plant Sciences Cornell University Geneva New York USA

5. New South Wales Department of Primary Industries Central Coast Primary Industries Centre Ourimbah New South Wales Australia

6. University of Tasmania Hobart Tasmania Australia

7. University of Illinois Urbana‐Champaign Illinois USA

8. Department of Biological Systems Engineering Washington State University Pullman Washington USA

Abstract

AbstractTemperate perennial fruit and nut trees play varying roles in world food diversity—providing edible oils and micronutrient, energy, and protein dense foods. In addition, perennials reuse significant amounts of biomass each year providing a unique resilience. But they also have a unique sensitivity to seasonal temperatures, requiring a period of dormancy for successful growing season production. This paper takes a global view of five temperate tree fruit crops—apples, cherries, almonds, olives, and grapes—and assesses the effects of future temperature changes on thermal suitability. It uses climate data from five earth system models for two CMIP6 climate scenarios and temperature‐related indices of stress to indicate potential future areas where crops cannot be grown and highlight potential new suitable regions. The loss of currently suitable areas and new additions in new locations varies by scenario. In the southern hemisphere (SH), end‐century (2081–2100) suitable areas under the SSP 5–8.5 scenario decline by more than 40% compared to a recent historical period (1991–2010). In the northern hemisphere (NH) suitability increases by 20% to almost 60%. With SSP1‐2.6, however, the changes are much smaller with SH area declining by about 25% and NH increasing by about 10%. The results suggest substantial restructuring of global production for these crops. Essentially, climate change shifts temperature‐suitable locations toward higher latitudes. In the SH, most of the historically suitable areas were already at the southern end of the landmass limiting opportunities for adaptation. If breeding efforts can bring chilling requirements for the major cultivars closer to that currently seen in some cultivars, suitable areas at the end of the century are greater, but higher summer temperatures offset the extent. The high value of fruit crops provides adaptation opportunities such as cultivar selection, canopy cooling using sprinklers, shade netting, and precision irrigation.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

Reference86 articles.

1. Almond Board of Australia. (2008).All about almonds fact sheet 03 – dormancy breaking.https://australianalmonds.com.au/wp‐content/uploads/2020/08/Est‐almond‐phys‐4‐dormancy‐breaking.pdf

2. Determination of Endodormancy Break in Almond Flower Buds by a Correlation Model Using the Average Temperature of Different Day Intervals and its Application to the Estimation of Chill and Heat Requirements and Blooming Date

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3