Local volatility under rough volatility

Author:

Bourgey Florian12,De Marco Stefano1ORCID,Friz Peter K.3,Pigato Paolo4ORCID

Affiliation:

1. CMAP, CNRS, Ecole Polytechnique Institut Polytechnique de Paris France

2. Bloomberg L.P. Quantitative Research New York USA

3. Technische Universität Berlin and Weierstraß‐Institut Berlin Germany

4. Department of Economics and Finance Università Roma Tor Vergata Rome Italy

Abstract

AbstractSeveral asymptotic results for the implied volatility generated by a rough volatility model have been obtained in recent years (notably in the small‐maturity regime), providing a better understanding of the shapes of the volatility surface induced by rough volatility models, supporting their calibration power to SP500 option data. Rough volatility models also generate a local volatility surface, via the so‐called Markovian projection of the stochastic volatility. We complement the existing results on implied volatility by studying the asymptotic behavior of the local volatility surface generated by a class of rough stochastic volatility models, encompassing the rough Bergomi model. Notably, we observe that the celebrated “1/2 skew rule” linking the short‐term at‐the‐money skew of the implied volatility to the short‐term at‐the‐money skew of the local volatility, a consequence of the celebrated “harmonic mean formula” of [Berestycki et al. (2002). Quantitative Finance, 2, 61–69], is replaced by a new rule: the ratio of the at‐the‐money implied and local volatility skews tends to the constant (as opposed to the constant 1/2), where H is the regularity index of the underlying instantaneous volatility process.

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Finance,Accounting

Reference63 articles.

1. Lifting the Heston model

2. Alòs E. García‐Lorite D. &Pravosud M.(2022).On the skew and curvature of implied and local volatilities. arXiv e‐prints https://arxiv.org/pdf/2205.11185.pdf

3. On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility

4. Petites perturbations aléatoires des systèmes dynamiques: développements asymptotiques;Azencott R.;Bulletin des sciences mathématiques,1985

5. Bally V.(2003).An elementary introduction to Malliavin calculus. Research Report RR‐4718 INRIA. Retrieved fromhttps://hal.inria.fr/inria‐00071868

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep calibration with random grids;Quantitative Finance;2024-04-12

2. Effective stochastic local volatility models;Quantitative Finance;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3