Reinforcement learning with dynamic convex risk measures

Author:

Coache Anthony1,Jaimungal Sebastian12ORCID

Affiliation:

1. Department of Statistical Sciences University of Toronto Toronto Canada

2. Oxford‐Man Institute University of Oxford Oxford United Kingdom

Abstract

AbstractWe develop an approach for solving time‐consistent risk‐sensitive stochastic optimization problems using model‐free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time‐consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor–critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Finance,Accounting

Reference67 articles.

1. Acciaio B. &Penner I.(2011).Dynamic risk measures. InAdvanced mathematical methods for finance(pp. 1–34). Springer.

2. On the theory of policy gradient methods: Optimality, approximation, and distribution shift;Agarwal A.;Journal of Machine Learning Research,2021

3. Constrained Risk-Averse Markov Decision Processes

4. Al‐Aradi A. Correia A. Naiff D. Jardim G. &Saporito Y.(2018).Solving nonlinear and high‐dimensional partial differential equations via deep learning.arXiv preprint arXiv:1811.08782.

5. Coherent Measures of Risk

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk-Averse Markov Decision Processes Through a Distributional Lens;Mathematics of Operations Research;2024-07-17

2. Optimal dynamic fixed-mix portfolios based on reinforcement learning with second order stochastic dominance;Engineering Applications of Artificial Intelligence;2024-07

3. Markov decision processes with risk-sensitive criteria: an overview;Mathematical Methods of Operations Research;2024-04

4. CVA Hedging with Reinforcement Learning;4th ACM International Conference on AI in Finance;2023-11-25

5. Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning;SIAM Journal on Financial Mathematics;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3