Visual impact of diffusion optic technology lenses for myopia control

Author:

Wolffsohn James S.1ORCID,Hill Jennifer S.2,Hunt Chris3,Young Graeme3

Affiliation:

1. Optometry and Vision Sciences Research Group, Health and Life Sciences Aston University Birmingham UK

2. SightGlass Vision Inc Los Altos California USA

3. Visioncare Research Ltd Farnham UK

Abstract

AbstractPurposeTo assess the visual impact of Diffusion Optics Technology™ 0.2 DOT lenses (SightGlass Vision Inc.) designed for myopia control on primary gaze. DOT spectacle lenses contain light scattering elements that scatter light as it passes through the lens which, in turn, reduces retinal image contrast.MethodsFifty‐one children (12.2 ± 1.3, range 10–14 years; 51% females) were randomly assigned to wear DOT spectacle (n = 27) or single vision lenses (n = 24) across six investigational sites in North America. Binocular high‐ and low‐contrast distant visual acuities, near visual acuity, reading speed, contrast sensitivity, stereoacuity and glare were assessed in primary gaze after at least 3 years of wear, with the study 95% powered in all metrics to detect significant differences between the groups.ResultsMean binocular distance high‐contrast (−0.09 ± 0.02 vs. −0.08 ± 0.02 logMAR, p = 0.81), low‐contrast (0.05 ± 0.02 vs. 0.07 ± 0.02 logMAR, p = 0.52) and near visual acuity with glare sources (−0.06 ± 0.03 vs. −0.09 ± 0.03 logMAR, p = 0.32) were similar for DOT and single vision lens wearers, respectively. Contrast sensitivity was similar between children wearing DOT or single vision lenses across 11 of the 16 spatial frequencies (p > 0.05). Mean stereopsis was similar (p = 0.30) with the DOT lenses (33.2 ± 12.5″) and single vision lenses (38.1 ± 14.2″). Functional reading speed metrics were similar in both study groups, as was the objectively measured head tilt during reading (p > 0.05). The mean halo radius was 0.56° ± 0.17° with the DOT lenses compared with 0.50° ± 0.12° with single vision lenses (p = 0.02), but the statistically significant difference was smaller than the non‐inferiority bound of 0.4°.ConclusionDiffusion optics technology lenses provide a clinically equivalent visual experience to a standard single vision lens.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3