Tiled Characteristic Maps for Tracking Detailed Liquid Surfaces

Author:

Narita F.1ORCID,Ando R.2ORCID

Affiliation:

1. GAME FREAK Inc. Japan

2. Unaffiliated Japan

Abstract

AbstractWe introduce tiled characteristic maps for level set method that accurately preserves both thin sheets and sharp edges over a long period of time. Instead of resorting to high‐order differential schemes, we utilize the characteristics mapping method to minimize numerical diffusion induced by advection. We find that although a single characteristic map could be used to better preserve detailed geometry, it suffers from frequent global re‐initialization due to the strong distortions that are locally generated. We show that when multiple localized tiled characteristic maps are used, this limitation is constrained only within tiles; enabling long‐term preservation of detailed structures where little distortion is observed. When applied to liquid simulation, we demonstrate that at a reasonably amount of added computational cost, our method retains small‐scale high‐fidelity (e.g., splashes and waves) that is quickly smeared out or deleted with purely grid‐based or particle level set methods.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3