The Multiple Gradual Maximal Covering Location Problem

Author:

Price Ashleigh N.1ORCID,Curtin Kevin M.1ORCID

Affiliation:

1. Department of Geography The University of Alabama, The Laboratory for Location Science, Shelby Hall 2031; Box 870322 Tuscaloosa Alabama 35401 USA

Abstract

This article describes a new spatial optimization model, the Multiple Gradual Maximal Covering Location Problem (MG‐MCLP). This model is useful when coverage from multiple facilities or sensors is necessary to consider a demand to be covered, and when the quality of that coverage varies with the number of located facilities within the service distance, and the distance from the demand itself. The motivating example for this model uses a coupled GIS and optimization framework to determine the optimal locations for acoustic sensors—typically used in police applications for gunshot detection—in Tuscaloosa, AL. The results identify the optimal facility locations for allocating multiple facilities, at different locations, to cover multiple demands and evaluate those optimal locations with distance‐decay. Solving the MG‐MCLP over a range of values allows for comparing the performance of varying numbers of available resources, which could be used by public safety operations to demonstrate the number of resources that would be required to meet policy goals. The results illustrate the flexibility in designing alternative spatial allocation strategies and provide a tractable covering model that is solved with standard linear programming and GIS software, which in turn can improve spatial data analysis across many operational contexts.

Funder

Division of Social and Economic Sciences

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Wiley

Reference34 articles.

1. A survey of healthcare facility location

2. An exact solution framework for the multiple gradual cover location problem

3. Covering‐location models for emergency situations that require multiple response units;Batta R.;Science,1990

4. The multiple gradual cover location problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3