On the notch sensitivity of as‐built Laser Beam Powder Bed–Fused AlSi10Mg specimens subjected to Very High Cycle Fatigue tests at ultrasonic frequency up to 109 cycles

Author:

Tridello Andrea1ORCID,Boursier Niutta Carlo1ORCID,Benelli Alessandro2ORCID,Pagnoncelli Ana Paula3ORCID,Rossetto Massimo1,Berto Filippo4ORCID,Paolino Davide Salvatore1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin Italy

2. Department of Applied Science and Technology Politecnico di Torino Turin Italy

3. Campus Management, Logistics, and Sustainability Politecnico di Torino Turin Italy

4. Department of Chemical Engineering, Materials, and Environment Università La Sapienza Rome Italy

Abstract

AbstractThe notch effect significantly influences the fatigue response of components and is particularly relevant for parts produced with additive manufacturing (AM) processes, characterized by complex geometries and possible geometric discontinuities inducing local and critical peak stresses. Moreover, the low surface quality, as well as manufacturing defects and residual stresses, interacts with the local peak stress induced by geometric discontinuities, complicating the assessment of the notch effect for AM parts and requiring extensive experimental fatigue investigations. In the present paper, the notch sensitivity of as‐built AlSi10Mg specimens produced with the laser beam powder bed fusion in the Very High Cycle Fatigue regime is investigated. Ultrasonic fatigue tests up to 109 cycles have been carried out on rectangular bars and rectangular bars with a central through‐thickness hole. The notch effect has been found to significantly affect the fatigue response of the investigated AlSi10Mg specimens, with surface defects having a main role and pointing out the influence of the surface quality on the crack formation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3