Affiliation:
1. State Key Laboratory of Hybrid Rice Hunan Hybrid Rice Research Center Changsha China
2. State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province College of Plant Science and Technology, Huazhong Agricultural University Wuhan China
3. Guangdong Provincial Key Laboratory of High Technology for Plant Protection Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China
Abstract
AbstractCell wall polysaccharides play key roles in fungal development, virulence, and resistance to the plant immune system, and are synthesized from many nucleotide sugars in the endoplasmic reticulum (ER)‐Golgi secretory system. Nucleotide sugar transporters (NSTs) are responsible for transporting cytosolic‐derived nucleotide sugars to the ER lumen for processing, but their roles in plant‐pathogenic fungi remain to be revealed. Here, we identified two important NSTs, NST1 and NST2, in the rice blast fungus Magnaporthe oryzae. Both NSTs were localized in the ER, which was consistent with a function in transporting nucleotide sugar for processing in the ER. Sugar transport property analysis suggested that NST1 is involved in transportation of mannose and glucose, while NST2 is only responsible for mannose transportation. Accordingly, deletion of NSTs resulted in a significant decrease in corresponding soluble saccharides abundance and defect in sugar utilization. Moreover, both NSTs played important roles in cell wall integrity, were involved in asexual development, and were required for full virulence. The NST mutants exhibited decreasing external glycoproteins and exposure of inner chitin, which resulted in activation of the host defence response. Altogether, our results revealed that two sugar transporters are required for fungal cell wall polysaccharides accumulation and full virulence of M. oryzae.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献