Digital holographic microscopy of spiropyran‐based dynamic materials

Author:

Jamali Ramin1ORCID,Rad Vahideh Farzam1,Razaghi Masoumeh2,Mohamadnia Zahra2,Khorasani Mojtaba23,Moradi Ali‐Reza14

Affiliation:

1. Department of Physics Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran

2. Department of Chemistry Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran

3. Research Center for Basic Sciences & Modern Technologies (RBST) Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran

4. School of Nano Science Institute for Research in Fundamental Sciences (IPM) Tehran Iran

Abstract

AbstractSpiropyran (SP)‐based dynamic materials undergo structural changes in response to external stimuli. In this paper, we show that digital holographic microscopy (DHM) is an effective candidate for characterisation of SPs (embedded in polymer matrices) and for monitoring of their dynamical changes. The polymer matrices are polylactic acid (PLA) and poly(methyl methacrylate) (PMMA) films, which are decorated with SPs and immobilised on graphene quantum dots (GQDs). GQDs are modified by benzylamines prior to the loading of SP species because of the enhancement of hydrophobic characteristics. UV irradiation is used as the external stimulus and the dynamical changes of the samples before and after UV irradiation are measured. DHM is arranged on a novel self‐referencing setup, which substantially reduces the sensitivity of DHM to environmental vibrations. Morphometric information for characterisation of the samples is obtained by analysis of the recorded digital holograms. The experimental results demonstrate the potential of the presented technique to serve as an alternative technique for surface measurement methodologies such as atomic force microscope and stylus profiler for surface characterisation of similar materials.

Publisher

Wiley

Subject

Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3