The influence of sample size on two approaches to estimate Black Grouse Lyrurus tetrix population size using non‐invasive sampling methods

Author:

Haider Marlene1ORCID,Steixner Ramona1,Zeni Teresa1,Vallant Stephanie1,Lentner Reinhard1,Schlick‐Steiner Birgit C.1,Steiner Florian M.1

Affiliation:

1. Department of Ecology University of Innsbruck Technikerstraße 25 Innsbruck 6020 Austria

Abstract

Population size is an important parameter to monitor for species conservation and management. This is especially important for rare and endangered species, as declines can give information about anthropogenic impacts and the need for new conservation measures. To estimate population size, various methods of analysis can be used, for which sample size is an important factor. Sample size is particularly important to consider when applying non‐invasive sampling strategies such as sampling faeces or feathers/hairs as a source of DNA, as a means to limit disturbance and stress for the species of concern. We investigated a Black Grouse Lyrurus tetrix population in the eastern part of the Alps, in East Tyrol (Austria), and estimated population size using two approaches: capture–recapture and rarefaction. With a set of 12 polymorphic microsatellite markers, we identified genotypes from faeces and feathers (backed up with 23 tissue samples) and checked for population substructure and gene flow among sampling sites. We estimated population size using four different models from the two approaches (molecular capture–recapture: TIRM, TIRMpart; rarefaction: hyperbolic function – Kohn, exponential function – Eggert). To evaluate the impact of sample size on the estimations, we used the full dataset of 500 samples (‘complete’ dataset) and half the dataset of 250 samples (‘half’ dataset). We also estimated the population size for each sex separately using complete and half datasets to check for sex‐specific differences in population size. We found similar results in three of four models (capture–recapture: capwire TIRM, capwire TIRMpart; rarefaction: rarefaction Kohn). Using just half of the data increased the uncertainties in the estimation of population size in all models used and deviations were particularly large in females, which indicated a sex bias. Only the complete dataset of males had an observation rate of more than two observations/individual, and this observation rate meets the recommendation for using the capwire models. This indicates that, for species with different sex‐specific detectability, larger sample sizes do not generally imply higher observation rates. We conclude that calculating the observation rates and population‐size estimations for each sex separately can improve overall population‐size estimation, especially in species with biased sex ratios and those that exhibit sex‐specific behaviour.

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3