Indoor point cloud semantic segmentation based on direction perception and hole sampling

Author:

Chen Xijiang12,Li Peng1ORCID,Zhao Bufan1ORCID,Lu Tieding23,Gong Xunqiang23,Deng Hui1

Affiliation:

1. School of Safety Science and Emergency Management Wuhan University of Technology Wuhan China

2. Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources East China University of Technology Nanchang China

3. School of Surveying and Mapping Engineering East China Institute of Technology Nanchang China

Abstract

AbstractMost existing point cloud segmentation methods ignore directional information when extracting neighbourhood features. Those methods are ineffective in extracting point cloud neighbourhood features because the point cloud data is not uniformly distributed and is restricted by the size of the convolution kernel. Therefore, we take into account both multiple directions and hole sampling (MDHS). First, we execute spherically sparse sampling with directional encoding in the surrounding domain for every point inside the data to increase the local perceptual field. The data input is the basic geometric features. We use the graph convolutional neural network to conduct the maximisation of point cloud characteristics in a local neighbourhood. Then the more representative local point features are automatically weighted and fused by an attention pooling layer. Finally, spatial attention is added to increase the connection between remote points, and then the segmentation accuracy is improved. Experimental results show that the OA and mIoU are 1.3% and 4.0% higher than the method PointWeb and 0.6% and 0.7% higher than the baseline method RandLA‐Net. For the indoor point cloud semantic segmentation, the segmentation effect of the proposed network is superior to other methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference35 articles.

1. Background‐aware 3‐D point cloud segmentation with dynamic point feature aggregation;Chen J.;IEEE Transactions on Geoscience and Remote Sensing,2022

2. RGAM: A novel network architecture for 3D point cloud semantic segmentation in indoor scenes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3