A survey on conventional and learning‐based methods for multi‐view stereo

Author:

Stathopoulou Elisavet Konstantina1ORCID,Remondino Fabio1ORCID

Affiliation:

1. 3D Optical Metrology (3DOM) Unit Bruno Kessler Foundation (FBK) Trento Italy

Abstract

Abstract3D reconstruction of scenes using multiple images, relying on robust correspondence search and depth estimation, has been thoroughly studied for the two‐view and multi‐view scenarios in recent years. Multi‐view stereo (MVS) algorithms aim to generate a rich, dense 3D model of the scene in the form of a dense point cloud or a triangulated mesh. In a typical MVS pipeline, the robust estimations for the camera poses along with the sparse points obtained from structure from motion (SfM) are used as input. During this process, the depth of generally every pixel of the scene is to be calculated. Several methods, either conventional or, more recently, learning‐based have been developed for solving the correspondence search problem. A vast amount of research exists in the literature using local, global or semi‐global stereomatching approaches, with the PatchMatch algorithm being among the most popular and efficient conventional ones in the last decade. Yet, and despite the widespread evolution of the algorithms, yielding complete, accurate and aesthetically pleasing 3D representations of a scene remains an open issue in real‐world and large‐scale photogrammetric applications. This work aims to provide a concrete survey on the most widely used MVS methods, investigating underlying concepts and challenges. To this end, the theoretical background and relative literature are discussed for both conventional and learning‐based approaches, with a particular focus on close‐range 3D reconstruction applications.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Computer Science Applications,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3