Affiliation:
1. Biology Department, The Graduate Center City University of New York 365 5th Avenue New York NY 10016 USA
2. Biology Department College of Staten Island 2800 Victory Blvd. Staten Island NY 10314 USA
Abstract
ABSTRACTWhat do seabirds perceive about the world? How do they do so? And how do they use the information available to them to make foraging decisions? Social cues provide seabirds with information about the location of prey. This can, of course, be passive and not involve higher‐order cognitive processes (e.g. simple conspecific or heterospecific attraction). However, seabirds display many behaviours that promote learning and the transmission of information between individuals: the vast majority of seabirds are colonial living, have an extended juvenile phase that affords them time to learn, routinely form intra‐ and interspecific associations, and can flexibly deploy a combination of foraging tactics. It is worth evaluating their foraging interactions in light of this. This review describes how seabirds use social information both at the colony and at sea to forage, and discusses the variation that exists both across species and amongst individuals. It is clear that social interactions are a critical and beneficial component of seabird foraging, with most of the variation concerning the way and extent to which social information is used, rather than whether it is used. While it may seem counterintuitive that large groups of potential competitors congregating at a patch can result in foraging gains, such aggregations can alter species dynamics in ways that promote coexistence. This review explores how competitive interference at a patch can be mitigated by behavioural modifications and niche segregation. Utilising others for foraging success (e.g. via social cues and facilitation at a patch) is likely to make population declines particularly damaging to seabirds if the quantity or quality of their social foraging interactions is reduced. Environmental changes have the potential to disrupt their social networks and thus, how these species obtain food and transfer information.
Funder
National Science Foundation
College of Staten Island, City University of New York