Plant disease detection with modified deep joint segmentation and combined GoogleNet‐IRNN

Author:

Salini R.1ORCID,Charlyn Pushpa Latha G.2,Khilar Rashmita2

Affiliation:

1. Department of Computer Science and Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai Tamilnadu India

2. Department of Information Technology Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai Tamilnadu India

Abstract

AbstractProductivity in agriculture plays a major role in economic expansion. Because plant disease is a widespread occurrence, plant disease detection is an important problem in the world of agriculture. Plants do suffer a significant consequence if the required care is not taken at the beginning, which affects the amount, quality or productivity of the relevant products. Because it can detect disease symptoms at the earliest stage and reduces the labour required for large crop farm tracking, the automated plant disease detection system is more advantageous. In order to detect plant diseases, this paper proposes a novel, four‐step methodology that consists of improved deep joint image segmentation, feature extraction (which includes LGXP, MBP, colour feature and hierarchy of skeleton feature extraction) and detection via hybrid DL classifier, specifically improved RNN with the transfer learning process and GoogleNet. By averaging the classifiers' results scores, the final detection result is calculated. In terms of several performance metrics, the suggested work's effectiveness is verified in comparison to the traditional models. In contrast to the SVM (79.5597), KNN (59.2767), LSTM (78.1446), GoogleNet (79.4025), CNN (77.6729), and CAE + CNN (80.1886), the F‐measure of the IRNN‐TL is 91.1949.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3