Balancing boat‐electrofishing sampling effort against costs for nearshore fish communities in the Toronto waterfront, Lake Ontario

Author:

Theis Sebastian12ORCID,Wallace Angela3,Graham Brian3,Coey Brynn3,Cartwright Lyndsay3,Poesch Mark1,Portiss Rick3,Ruppert Jonathan L. W.23

Affiliation:

1. Fisheries and Aquatic Conservation Lab, Faculty of Agricultural, Life and Environmental Sciences University of Alberta Edmonton Alberta Canada

2. University of Toronto Department of Ecology & Evolutionary Biology Toronto Ontario Canada

3. Toronto and Region Conservation Authority Watershed Planning and Ecosystem Science North York Ontario Canada

Abstract

AbstractTo enhance management of aquatic systems, long‐term monitoring programs are crucial. However, managers often lack sufficient guidance in decision‐making. In this study, we analyzed nearshore electrofishing data from Lake Ontario spanning 18 years and over 100,000 caught fish to assess sampling designs for various coastal habitats. Using simulation, we evaluated precision of catch per unit effort (CPUE) for all species, piscivores, and specialist species, at different levels of electrofishing sampling effort. For overall CPUE in any habitat type, increased precision declined with additional electrofishing runs, particularly after reaching 30–40 runs. Adjustments in sampling effort, such as adding 10 runs per year for open‐coast sites, increased precision of overall CPUE by 10%. Adding 8 runs per year for wetlands increased precision of specialist‐species CPUE by 10%. However, additional runs in embayments did not increase precision for all species, piscivores, or specialist species. Our findings underscore the importance of considering community composition and abundance when evaluating CPUE precision and illustrates a flexible approach to optimize sampling effort in aquatic monitoring programs.

Funder

Mitacs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3