Paris Agreement could prevent regional mass extinctions of coral species

Author:

Couce Elena12ORCID,Cowburn Benjamin1ORCID,Clare David1ORCID,Bluemel Joanna K.3ORCID

Affiliation:

1. Centre for Environment, Fisheries & Aquaculture Science (Cefas) Pakefield Road Lowestoft NR33 0HT UK

2. School of Earth Sciences University of Bristol Bristol BS8 1RJ UK

3. Centre for Environment, Fisheries & Aquaculture Science (Cefas) Barrack Road Weymouth DT4 8UB UK

Abstract

AbstractCoral reef ecosystems are expected to undergo significant declines over the coming decades as oceans become warmer and more acidic. We investigate the environmental tolerances of over 650 Scleractinian coral species based on the conditions found within their present‐day ranges and in areas where they are currently absent but could potentially reach via larval dispersal. These “environmental envelopes” and connectivity constraints are then used to develop global forecasts for potential coral species richness under two emission scenarios, representing the Paris Agreement target (“SSP1‐2.6”) and high levels of emissions (“SSP5‐8.5”). Although we do not directly predict coral mortality or adaptation, the projected changes to environmental suitability suggest considerable declines in coral species richness for the majority of the world's tropical coral reefs, with a net loss in average local richness of 73% (Paris Agreement) to 91% (High Emissions) by 2080–2090 and particularly large declines across sites in the Great Barrier Reef, Coral Sea, Western Indian Ocean, and Caribbean. However, at the regional scale, we find that environmental suitability for the majority of coral species can be largely maintained under the Paris Agreement target, with 0%–30% potential net species lost in most regions (increasing to 50% for the Great Barrier Reef) as opposed to 80%–90% losses under High Emissions. Projections for subtropical areas suggest that range expansion will give rise to coral reefs with low species richness (typically 10–20 coral species per region) and will not meaningfully offset declines in the tropics. This work represents the first global projection of coral species richness under oceanic warming and acidification. Our results highlight the critical importance of mitigating climate change to avoid potentially massive extinctions of coral species.

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3