Affiliation:
1. Discipline of Biomedical Engineering, School of Electrical and Mechanical Engineering The University of Adelaide Adelaide Australia
2. Amazon Cambridge Massachusetts USA
Abstract
SummaryRapid eye movement sleep is associated with distinct changes in various biomedical signals that can be easily captured during sleep, lending themselves to automated sleep staging using machine learning systems. Here, we provide a perspective on the critical characteristics of biomedical signals associated with rapid eye movement sleep and how they can be exploited for automated sleep assessment. We summarise key historical developments in automated sleep staging systems, having now achieved classification accuracy on par with human expert scorers and their role in the clinical setting. We also discuss rapid eye movement sleep assessment with consumer sleep trackers and its potential for unprecedented sleep assessment on a global scale. We conclude by providing a future outlook of computerised rapid eye movement sleep assessment and the role AI systems may play.