Covariance‐based soft clustering of functional data based on the Wasserstein–Procrustes metric

Author:

Masarotto Valentina1ORCID,Masarotto Guido2

Affiliation:

1. Mathematisch Instituut Universiteit Leiden Leiden Netherlands

2. Department of Statistical Sciences University of Padua Padua Italy

Abstract

AbstractWe consider the problem of clustering functional data according to their covariance structure. We contribute a soft clustering methodology based on the Wasserstein–Procrustes distance, where the in‐between cluster variability is penalized by a term proportional to the entropy of the partition matrix. In this way, each covariance operator can be partially classified into more than one group. Such soft classification allows for clusters to overlap, and arises naturally in situations where the separation between all or some of the clusters is not well‐defined. We also discuss how to estimate the number of groups and to test for the presence of any cluster structure. The algorithm is illustrated using simulated and real data. An R implementation is available in the Appendix S1.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference38 articles.

1. Barycenters in the Wasserstein space;Agueh M.;Society for Industrial and Applied Mathematics,2011

2. On functional data analysis and related topics;Aneiros G.;Journal of Multivariate Analysis,2022

3. An extensive comparative study of cluster validity indices;Arbelaitz O.;Pattern Recognition,2013

4. Clustering with the average silhouette width;Batool F.;Computational Statistics & Data Analysis,2021

5. Testing equality between several populations covariance operators;Boente G.;Annals of the Institute of Statistical Mathematics,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3