Daisee: Adaptive importance sampling by balancing exploration and exploitation

Author:

Lu Xiaoyu12ORCID,Rainforth Tom3,Teh Yee Whye3

Affiliation:

1. Amazon London EC2A 2FA UK

2. University of Oxford Oxford UK

3. Department of Statistics University of Oxford Oxford OX1 2JD UK

Abstract

AbstractWe study adaptive importance sampling (AIS) as an online learning problem and argue for the importance of the trade‐off between exploration and exploitation in this adaptation. Borrowing ideas from the online learning literature, we propose Daisee, a partition‐based AIS algorithm. We further introduce a notion of regret for AIS and show that Daisee has cumulative pseudo‐regret, where is the number of iterations. We then extend Daisee to adaptively learn a hierarchical partitioning of the sample space for more efficient sampling and confirm the performance of both algorithms empirically.

Funder

FP7 Ideas: European Research Council

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference51 articles.

1. Analysis of Thompson sampling for the multi‐armed bandit problem;Agrawal S.;JMLR: Workshop and Conference Proceedings,2012

2. Convergence rates for optimised adaptive importance samplers

3. Weighted sums of certain dependent random variables

4. Balsubramani A.(2014).Sharp finite‐time iterated‐logarithm martingale concentration.arXiv preprint arXiv:1405.2639.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3