Connecting simple and precise P‐values to complex and ambiguous realities (includes rejoinder to comments on “Divergence vs. decision P‐values”)

Author:

Greenland Sander1ORCID

Affiliation:

1. Department of Epidemiology and Department of Statistics University of California Los Angeles California USA

Abstract

AbstractMathematics is a limited component of solutions to real‐world problems, as it expresses only what is expected to be true if all our assumptions are correct, including implicit assumptions that are omnipresent and often incorrect. Statistical methods are rife with implicit assumptions whose violation can be life‐threatening when results from them are used to set policy. Among them are that there is human equipoise or unbiasedness in data generation, management, analysis, and reporting. These assumptions correspond to levels of cooperation, competence, neutrality, and integrity that are absent more often than we would like to believe. Given this harsh reality, we should ask what meaning, if any, we can assign to the P‐values, “statistical significance” declarations, “confidence” intervals, and posterior probabilities that are used to decide what and how to present (or spin) discussions of analyzed data. By themselves, P‐values and CI do not test any hypothesis, nor do they measure the significance of results or the confidence we should have in them. The sense otherwise is an ongoing cultural error perpetuated by large segments of the statistical and research community via misleading terminology. So‐called inferential statistics can only become contextually interpretable when derived explicitly from causal stories about the real data generator (such as randomization), and can only become reliable when those stories are based on valid and public documentation of the physical mechanisms that generated the data. Absent these assurances, traditional interpretations of statistical results become pernicious fictions that need to be replaced by far more circumspect descriptions of data and model relations.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3