G‐optimal grid designs for kriging models

Author:

Dasgupta Subhadra1,Mukhopadhyay Siuli2ORCID,Keith Jonathan3

Affiliation:

1. Faculty of Mathematics, Ruhr‐Universität Bochum Germany

2. Department of Mathematics Indian Institute of Technology Bombay India

3. School of Mathematics, Monash University Australia

Abstract

AbstractThis work is focused on finding G ‐optimal designs theoretically for kriging models with two ‐dimensional inputs and separable exponential covariance structures. For design comparison, the notion of evenness of two‐dimensional grid designs is developed. The mathematical relationship between the design and the supremum of the mean squared prediction error (SMSPE) function is studied and then optimal designs are explored for both prospective and retrospective design scenarios. In the case of prospective designs, the new design is developed before the experiment is conducted and the regularly spaced grid is shown to be the G ‐optimal design. Retrospective designs are constructed by adding or deleting points from an already existing design. Deterministic algorithms are developed to find the best possible retrospective designs (which minimizes the SMSPE). It is found that a more evenly spread design under the G ‐optimality criterion leads to the best possible retrospective design. For all the cases of finding the optimal prospective designs and the best possible retrospective designs, both frequentist and Bayesian frameworks have been considered. The proposed methodology for finding retrospective designs is illustrated with a spatio‐temporal river water quality monitoring experiment.This article is protected by copyright. All rights reserved.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3