A new paradigm for high‐dimensional data: Distance‐based semiparametric feature aggregation framework via between‐subject attributes

Author:

Liu Jinyuan1ORCID,Zhang Xinlian2,Lin Tuo2,Chen Ruohui2,Zhong Yuan3,Chen Tian4,Wu Tsungchin2,Liu Chenyu2,Huang Anna5,Nguyen Tanya T.67,Lee Ellen E.68,Jeste Dilip V.9,Tu Xin M.2

Affiliation:

1. Department of Biostatistics Vanderbilt University Nashville Tennessee USA

2. Department of Family Medicine and Public Health UC San Diego San Diego California USA

3. Department of Biostatistics University of Michigan Ann Arbor Michigan USA

4. Takeda Pharmaceuticals Cambridge Massachusetts USA

5. Department of Psychiatry Vanderbilt University Nashville Tennessee USA

6. Veterans Affairs San Diego Healthcare System La Jolla California USA

7. Center for Microbiome Innovation UC San Diego San Diego California USA

8. Department of Psychiatry UC San Diego San Diego California USA

9. Stein Institute for Research on Aging UC San Diego San Diego California USA

Abstract

AbstractThis article proposes a distance‐based framework incentivized by the paradigm shift toward feature aggregation for high‐dimensional data, which does not rely on the sparse‐feature assumption or the permutation‐based inference. Focusing on distance‐based outcomes that preserve information without truncating any features, a class of semiparametric regression has been developed, which encapsulates multiple sources of high‐dimensional variables using pairwise outcomes of between‐subject attributes. Further, we propose a strategy to address the interlocking correlations among pairs via the U‐statistics‐based estimating equations (UGEE), which correspond to their unique efficient influence function (EIF). Hence, the resulting semiparametric estimators are robust to distributional misspecification while enjoying root‐n consistency and asymptotic optimality to facilitate inference. In essence, the proposed approach not only circumvents information loss due to feature selection but also improves the model's interpretability and computational feasibility. Simulation studies and applications to the human microbiome and wearables data are provided, where the feature dimensions are tens of thousands.

Funder

National Institute of Mental Health

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3