Sex‐biased gene content is associated with sex chromosome turnover in Danaini butterflies

Author:

Mora Pablo1,Hospodářská Monika12,Voleníková Anna Chung1,Koutecký Petr1,Štundlová Jana1,Dalíková Martina13,Walters James R.3,Nguyen Petr12ORCID

Affiliation:

1. Faculty of Science University of South Bohemia České Budějovice Czech Republic

2. Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic

3. Department of Ecology & Evolutionary Biology University of Kansas Lawrence Kansas USA

Abstract

AbstractSex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo‐sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo‐sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z‐linked scaffolds. We found that the Danaus neo‐sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex‐biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female‐ and male‐biased genes, respectively, which could have hypothetically facilitated fixation of the neo‐sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo‐Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3