Long non‐coding RNAs mediate fish gene expression in response to ocean acidification

Author:

Kang Jingliang1ORCID,Chung Arthur1ORCID,Suresh Sneha1ORCID,Bonzi Lucrezia C.1ORCID,Sourisse Jade M.1ORCID,Ramirez‐Calero Sandra1ORCID,Romeo Daniele1ORCID,Petit‐Marty Natalia1ORCID,Pegueroles Cinta2ORCID,Schunter Celia13ORCID

Affiliation:

1. Swire Institute of Marine Science, School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong SAR

2. Department of Genetics, Microbiology and Statistics, Institute for Research on Biodiversity (IRBio) University of Barcelona Barcelona Spain

3. State Key Laboratory of Marine Pollution and Department of Chemistry City University of Hong Kong Hong Kong SAR China

Abstract

AbstractThe majority of the transcribed genome does not have coding potential but these non‐coding transcripts play crucial roles in transcriptional and post‐transcriptional regulation of protein‐coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non‐coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA‐seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species‐specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans‐regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.

Funder

Generalitat de Catalunya

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3