Inside‐out: Synergising leaf biochemical traits with stomatal‐regulated water fluxes to enhance transpiration modelling during abiotic stress

Author:

Caine Robert S.12ORCID,Khan Muhammad S.1ORCID,Brench Robert A.1ORCID,Walker Heather J.123ORCID,Croft Holly L.12ORCID

Affiliation:

1. Plants, Photosynthesis and Soil, School of Biosciences University of Sheffield South Yorkshire UK

2. School of Biosciences, Institute for Sustainable Food University of Sheffield South Yorkshire UK

3. biOMICS Mass Spectrometry Facility, School of Biosciences University of Sheffield South Yorkshire UK

Abstract

AbstractAs the global climate continues to change, plants will increasingly experience abiotic stress(es). Stomata on leaf surfaces are the gatekeepers to plant interiors, regulating gaseous exchanges that are crucial for both photosynthesis and outward water release. To optimise future crop productivity, accurate modelling of how stomata govern plant–environment interactions will be crucial. Here, we synergise optical and thermal imaging data to improve modelled transpiration estimates during water and/or nutrient stress (where leaf N is reduced). By utilising hyperspectral data and partial least squares regression analysis of six plant traits and fluxes in wheat (Triticum aestivum), we develop a new spectral vegetation index; the Combined Nitrogen and Drought Index (CNDI), which can be used to detect both water stress and/or nitrogen deficiency. Upon full stomatal closure during drought, CNDI shows a strong relationship with leaf water content (r2 = 0.70), with confounding changes in leaf biochemistry. By incorporating CNDI transformed with a sigmoid function into thermal‐based transpiration modelling, we have increased the accuracy of modelling water fluxes during abiotic stress. These findings demonstrate the potential of using combined optical and thermal remote sensing‐based modelling approaches to dynamically model water fluxes to improve both agricultural water usage and yields.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3