Affiliation:
1. Department of Neuroradiology University Hospital Bonn, Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany
2. Department of Neuroradiology Goethe University Frankfurt, University Hospital Frankfurt am Main Frankfurt/Main Germany
Abstract
AbstractObjectiveThe aim of this study was to investigate whether the relative narrowing of the dural venous sinuses by arachnoid granulations (AGs) is more pronounced in patients with idiopathic intracranial hypertension (IIH) compared to healthy controls.BackgroundIIH is characterized by increased intracranial pressure, which is associated with symptoms such as headache and visual disturbances. The role of cerebral venous drainage obstruction in IIH is the subject of ongoing research.Materials and MethodsIn this retrospective case–control study, 3D contrast‐enhanced magnetic resonance images of a cohort of 43 patients with IIH were evaluated for (1) the number of AGs per venous sinus and (2) the diameters of the dural venous sinuses at the site of an AG and at standardized measurement points. In addition, the minimum width of the transverse/sigmoid sinus was measured. All data were compared to the same data from a cohort of 43 control participants.ResultsPatients with IIH showed less relative sinus narrowing by AG compared to controls (median: 7%, interquartile range [IQR] 10% vs. 11%, IQR 9% in controls; p = 0.009). In patients with IIH, sinus diameter was larger at the site of an AG (70 ± 25 mm2) compared to its diameter at the standardized measurement point (48 ± 23 mm2; p = 0.010). In the superior sagittal sinus (SSS), patients with IIH had smaller AGs (median: 3 mm2, IQR 2 mm2 vs. 5 mm2, IQR 3 mm2 in controls; p = 0.023) while the respective sinus segment was larger (median: 69 mm2; IQR 21 mm2 vs. 52 mm2, IQR 26 mm2 in controls; p = 0.002). The right transverse sinus was narrower in patients with IIH (41 ± 21 mm vs. 57 ± 20 mm in controls; p < 0.001).ConclusionsIn contrast to our hypothesis, patients with IIH showed less pronounced relative sinus narrowing by AG compared to controls, especially within the SSS, where AGs were smaller and the corresponding sinus segment wider. Smaller AGs could result in lower cerebrospinal fluid resorption, favoring the development of IIH. Conversely, the smaller AGs could also be a consequence of IIH due to backpressure in the SSS because of the narrower transverse/sigmoid sinus, which widens the SSS and compresses the AG.