Fatigue strength evaluation of case‐hardened components combining heat‐treatment simulation and probabilistic approaches

Author:

Iss Valérian1,Meis Jean‐André2,Rajaei Ali1,Hallstedt Bengt1ORCID,Broeckmann Christoph1

Affiliation:

1. Chair and Institute for Materials Applications in Mechanical Engineering RWTH Aachen University Aachen Germany

2. Flender GmbH Bocholt Germany

Abstract

AbstractIn order to raise the hardness and strength of the surface layer of mechanical components and induce favorable residual compressive stresses, case‐hardening procedures have become established in the heat treatment of steel. In this work, a calculation concept for the fatigue strength of components that have been case‐hardened through carburizing heat treatment is being developed. The residual stress and the load stresses in complex‐shaped, carburized materials are determined using a finite element (FE) model. The fatigue limit of the components is derived using probabilistic methods and taking into account hardness gradients, residual stresses, and non‐metallic inclusions. The model is validated with available axial bending fatigue test data and then used to predict the rotating bending fatigue limit of samples with various geometries and heat‐treatment conditions. This work demonstrates the capability of combining probabilistic and FE‐based modeling to represent complex interactions between variables that affect the fatigue of heat‐treated components, such as steel cleanliness, notch shape, case‐hardening depth, or loading conditions.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3