Affiliation:
1. Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
Abstract
AbstractEndometrial cancer (EC) is a common gynaecological malignant tumour with unclear pathogenesis. Small nucleolar RNA (snoRNA) is involved in many biological processes, including those of cancers. Using the Cancer Genome Atlas (TCGA) database, the expression pattern of a snoRNA, SNORA73B, was analysed. The biological functions of SNORA73B were assessed by in vitro proliferation, apoptosis, migration, and invasion assays and in vivo by the xenograft model. RNA sequencing (RNA‐seq) and RNA immunoprecipitation assays were performed to determine the relationship between SNORA73B and its target genes. High‐performance liquid chromatography (HPLC) was performed to detect the pseudouridine content of the mindbomb E3 ubiquitin protein ligase 1 gene (MIB1). The stability of MIB1 mRNA was evaluated using a transcription inhibitor, actinomycin D. By performing co‐immunoprecipitation assays, the change in the ubiquitin levels of the Jagged canonical Notch ligand 1 (Jag 1), caused by SNORA73B and MIB1, was identified. RNA‐seq and qRT‐PCR were performed to detect the alternative splicing of the regulator of the chromosome condensation 1 gene (RCC1). The TCGA database analysis showed that SNORA73B was highly expressed in EC. SNORA73B promoted cell proliferation, migration, and invasion and inhibited apoptosis. SNORA73B modified the pseudouridine content in MIB1 and increased the stability of MIB1 mRNA and protein; thus, it affected Jag 1 ubiquitination and further activated the Notch pathway. SNORA73B also affected the alternative splicing of RCC1, increasing the number of transcripts, RCC1‐T2 and RCC1‐T3, which promoted cell proliferation, migration, and invasion. SNORA73B can be a potential target for EC.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Project for Key Medicine Discipline Construction of Guangzhou Municipality
Subject
Cell Biology,Molecular Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献