A machine learning tool for the diagnosis of SARS‐CoV‐2 infection from hemogram parameters

Author:

Gómez‐Rojas S.1ORCID,Segura G. Pérez1ORCID,Ollé J.2,Carreño Gómez‐Tarragona G.1,Medina J. González3,Aguado J. M.45ORCID,Guerrero E. Vera1,Santaella M. Poza1,Martínez‐López J.15

Affiliation:

1. Department of Hematology Hospital Universitario 12 octubre Madrid Spain

2. Conceptos Claros Co Barcelona Spain

3. Department of Hematology Hospital Universitario Fundación Jiménez Díaz Madrid Spain

4. Unit of Infectious Diseases Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (i+12), CIBERINFEC, ISCIII Madrid Spain

5. Department of Medicine, School of Medicine Universidad Complutense Madrid Spain

Abstract

AbstractMonocytes and neutrophils play key roles in the cytokine storm triggered by SARS‐CoV‐2 infection, which changes their conformation and function. These changes are detectable at the cellular and molecular level and may be different to what is observed in other respiratory infections. Here, we applied machine learning (ML) to develop and validate an algorithm to diagnose COVID‐19 using blood parameters. In this retrospective single‐center study, 49 hemogram parameters from 12,321 patients with clinical suspicion of COVID‐19 and tested by RT‐PCR (4239 positive and 8082 negative) were analysed. The dataset was randomly divided into training and validation sets. Blood cell parameters and patient age were used to construct the predictive model with the support vector machine (SVM) tool. The model constructed from the training set (5936 patients) achieved an accuracy for diagnosis of SARS‐CoV‐2 infection of 0.952 (95% CI: 0.875–0.892). Test sensitivity and specificity was 0.868 and 0.899, respectively, with a positive (PPV) and negative (NPV) predictive value of 0.896 and 0.872, respectively (prevalence 0.50). The validation set model (4964 patients) achieved an accuracy of 0.894 (95% CI: 0.883–0.903). Test sensitivity and specificity was 0.8922 and 0.8951, respectively, with a positive (PPV) and negative (NPV) predictive value of 0.817 and 0.94, respectively (prevalence 0.34). The area under the receiver operating characteristic curve was 0.952 for the algorithm performance. This algorithm may allow to rule out COVID‐19 diagnosis with 94% of probability. This represents a great advance for early diagnostic orientation and guiding clinical decisions.

Funder

Beckman Coulter Foundation

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3