Phosphorylated MAPK11 promotes the progression of clear cell renal cell carcinoma by maintaining RUNX2 protein abundance

Author:

Song Xiandong1ORCID,Dong Changming1ORCID,Man Xiaojun1ORCID

Affiliation:

1. Department of Urology The First Hospital of China Medical University Shenyang Liaoning China

Abstract

AbstractPrevious studies have demonstrated that mitogen‐activated protein kinase 11 (MAPK11) functions as an important point of integration in signalling transduction pathways and controlling endocellular processes, including viability of cells, differentiation, proliferation and apoptosis, through the sequence phosphorylation of the substrate protein Ser/Thr kinase protein cascade. Though MAPK 11 plays an important role in various tumours, especially in the invasive and metastatic processes, its expression and molecular mechanism in clear cell renal cell carcinoma (ccRCC) remain unclear. Runt‐associated transcription factor 2 (RUNX2), a main transcription factor for osteoblast differentiation and chondrocyte maturation, has high expression in a number of tumours. In this study, the mRNA and protein levels of targeted genes in ccRCC tissues and adjacent tissues are analysed using the Cancer Genome Atlas (TCGA) database and western blotting. The ccRCC cell proliferation was measured with colony formation and EdU assay, and cell migration was examined through transwell assay. The interactive behaviour between proteins was detected with immunoprecipitation. Half‐life period of RUNX2 protein was measured with cycloheximide chase assay. The results of the study indicated overexpression of MAPK11 and RUNX2 in ccRCC tissues and cell lines. MAPK11 and RUNX2 promoted the ccRCC cell proliferation and migration. Additionally, physical interaction took place between RUNX2 and P‐MAPK11, which functioned to sustain the stability of RUNX2 protein. The high expression of RUNX2 could neutralize the functional degradation in MAPK11. And the outcomes of the study suggest that the P‐MAPK11/RUNX2 axis may be used as a potential therapeutic target of ccRCC.

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3