The ethylene receptor mutation etr2b reveals crosstalk between ethylene and ABA in the control of Cucurbita pepo germination

Author:

Iglesias‐Moya Jessica1,Cebrián Gustavo1,Garrido Dolores2,Martínez Cecilia1,Jamilena Manuel1ORCID

Affiliation:

1. Department of Biology and Geology Agri‐Food Campus of International Excellence (CeiA3) and Research Centre CIAMBITAL, University of Almería Almería Spain

2. Department of Plant Physiology University of Granada Granada Spain

Abstract

AbstractThe enhanced salt tolerance of squash ethylene‐insensitive mutants during germination and early stages of seedling development suggested that abscisic acid (ABA) could mediate this tolerance. To gain insight into the crosstalk between ethylene and ABA in seed germination, the germination rate and early seedling growth of wild type (WT) and ethylene‐insensitive etr2b mutant were compared in seeds germinated under water and exogenous ABA treatment. The etr2b seeds germinated earlier than WT under both water and ABA, and the effect of ABA on radicle length and seedling growth of etr2b was lower than in WT, indicating that etr2b is also insensitive to ABA. The comparison of ABA and ethylene contents and ABA and ethylene gene expression profiles in WT and etr2b dry and imbibed seeds in either water, NaCl or ABA demonstrated a clear crosstalk between ethylene and ABA in germination. The expression profiles of ethylene genes in WT and etr2b indicated that the role of ethylene in seed germination does not appear to follow the canonical ethylene signaling pathway. Instead, etr2b reduces ABA content during formation of the seeds (dry seeds) and in response to seed imbibition and germination, which means diminished dormancy in the ethylene mutant. The etr2b mutation downregulated the expression of ABA biosynthesis and signaling genes during germination, demonstrating the positive role of ethylene receptor gene CpETR2B on seed germination and early seedling growth in squash is mediated by ABA. The reduced effect of exogenous ABA on ethylene production and ethylene gene expression in etr2b seeds suggests that this regulation is also dependent on ethylene.

Funder

Ministry of Economy, Knowledge, Business and University, Andalusia

Ministry of Science and Innovation

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3