Possible pathogenetic role of ammonia in liver cirrhosis without hyperammonemia of venous blood: The so‐called latency period of abnormal ammonia metabolism

Author:

Katayama Kazuhiro1,Kakita NaruyasuORCID

Affiliation:

1. Department of Gastroenterology and Hepatology Kaizuka City Hospital Kaizuka Osaka Japan

Abstract

AbstractAmmonia plays a crucial role in the pathogenesis of hepatic encephalopathy. Ammonia is also involved in many other pathological conditions seen in cirrhosis, such as sarcopenia, liver fibrosis, hepatocellular injury, immune dysfunction, and hyperammonemia. Furthermore, the ammonia level of the veins is a useful prognostic factor for cirrhosis. In cirrhosis without hyperammonemia of the vein, however, covert hepatic encephalopathy has been reported. This discrepancy is because of the anatomical features of ammonia metabolism. There are two systems in the body for detoxifying ammonia: one is the urea cycle in the liver, and the other is the glutamine synthesis pathway in skeletal muscle and other tissues. The blood processed in the liver's urea cycle is then transported via arteries to various organs. Further processing occurs in the brain and skeletal muscle's glutamine synthesis pathway before entering the veins. When the urea cycle function decreases in cirrhosis, the ammonia levels in the artery increase. In response, the glutamine synthesis pathway compensates by increasing the capacity to process ammonia. Therefore, the ammonia concentration in the veins downstream of skeletal muscles does not increase immediately. However, the brain and skeletal muscles, which receive arterial blood, might be exposed to high ammonia concentrations. In addition, branched‐chain amino acids in venous blood decrease. This period is the transition phase from early‐ to late‐phase cirrhosis, and understanding the pathophysiology during this stage is extremely important for preventing the progression of cirrhosis.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms;International Journal of Molecular Sciences;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3