Affiliation:
1. Istituto di Chimica e Composti Organo Metallici Pisa Italy
2. Istituto di Biofisica Pisa Italy
Abstract
AbstractThe unicellular microalga Euglena gracilis has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of E. gracilis and Bos taurus retina. The almost perfect superimposability (correlation coefficient r = 0.955) of these spectra states that the Euglena possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin‐like proteins. Raman spectra recorded in vivo on photoreceptors of E. gracilis after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.